Air Purifier Technology—Excerpts from Wikipedia

The following information is from Wikipedia and is not edited other than emphasis added in bold.


Not to be confused with adsorption.

Absorption is a condition in which something takes in another substance.[1]

The process of absorption means that a substance captures and transforms energy. The absorbent distributes the material it captures throughout whole and adsorbent only distributes it through the surface.

The process of gas or liquid which penetrate into the body of adsorbent is commonly known as absorption.


Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface.[1]

Carbon capture and storage

Typical adsorbents proposed for carbon capture and storage are zeolites and MOFs.[12] The customization of adsorbents makes them a potentially attractive alternative to absorption. Because adsorbents can be regenerated by temperature or pressure swing, this step can be less energy intensive than absorption regeneration methods.[13] Major problems that are present with adsorption cost in carbon capture are: regenerating the adsorbent, mass ratio, solvent/MOF, cost of adsorbent, production of the adsorbent, lifetime of adsorbent.[14]

Air filter

A particulate air filter is a device composed of fibrous or porous materials which removes solid particulates such as dust, pollen, mold, and bacteria from the air. Filters containing an adsorbent or catalyst such as charcoal (carbon) may also remove odors and gaseous pollutants such as volatile organic compounds or ozone.[1] Air filters are used in applications where air quality is important, notably in building ventilation systems and in engines.

Air ioniser

An air ioniser (or negative ion generator or Chizhevsky’s chandelier) is a device that uses high voltage to ionise (electrically charge) air molecules.

Adverse health effects

A number of studies have been carried out on negative ion generators. One study shows that the ozone generated can exceed guidelines in small, non ventilated areas.[10] One study showed that ozone can react with other constituents, namely cleaning agents to increase pollutants such as formaldehyde (this study had as its objective the testing of the use of cleaning products and air fresheners indoors and associated health risks as opposed to adverse health effects of air ionisers).[11]

Air purifier

An air purifier or air cleaner is a device which removes contaminants from the air in a room to improve indoor air quality. These devices are commonly marketed as being beneficial to allergy sufferers and asthmatics, and at reducing or eliminating second-hand tobacco smoke.

Use and benefits of purifiers

Dust, pollen, pet dander, mold spores, and dust mite feces can act as allergens, triggering allergies in sensitive people. Smoke particles and volatile organic compounds (VOCs) can pose a risk to health. Exposure to various components such as VOCs increases the likelihood of experiencing symptoms of sick building syndrome.[8]

Indoor Air Facts No. 7 – Residential Air Cleaners – EPA publication

Atmosphere of Earth


The atmosphere of Earth is the layer of gases, commonly known as air, that surrounds the planet Earth and is retained by Earth’s gravity. The atmosphere of Earth protects life on Earth by creating pressure allowing for liquid water to exist on the Earth’s surface, absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night (the diurnal temperature variation).

By volume, dry air contains 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases.[8] Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere.

The remaining gases are often referred to as trace gases,[12] among which are the greenhouse gases, principally carbon dioxide, methane, nitrous oxide, and ozone. Besides argon, already mentioned, other noble gases, neon, helium, krypton, and xenon are also present. Filtered air includes trace amounts of many other chemical compounds.


High-efficiency particulate air (HEPA),[1] also known as high-efficiency particulate absorbing and high-efficiency particulate arrestance,[2] is an efficiency standard of air filter.[3]

Filters meeting the HEPA standard must satisfy certain levels of efficiency. Common standards require that a HEPA air filter must remove—from the air that passes through—at least 99.95% (European Standard)[4] or 99.97% (ASME, U.S. DOE)[5][6] of particles whose diameter is greater than or equal to 0.3 µm. See the Specifications section for more information.

The micrometre (International spelling as used by the International Bureau of Weights and Measures;[1] SI symbol: μm) or micrometer (American spelling), also commonly known by the previous name micron, is an SI derived unit of length equalling 1×10−6 metre (SI standard prefix “micro-” = 10−6); that is, one millionth of a metre (or one thousandth of a millimetre, 0.001 mm, or about 0.000039 inch).[1]

Molecular size

Most molecules are far too small to be seen with the naked eye, although molecules of many polymers can reach macroscopic sizes, including biopolymers such as DNA. Molecules commonly used as building blocks for organic synthesis have a dimension of a few angstroms (Å) to several dozen Å, or around one billionth of a meter. Single molecules cannot usually be observed by light (as noted above), but small molecules and even the outlines of individual atoms may be traced in some circumstances by use of an atomic force microscope. Some of the largest molecules are macromolecules or supermolecules.

The angstrom[1][2][3][4] (/ˈæŋstrəm/, /ˈæŋstrʌm/;[3][5][6] ANG-strəm, ANG-strum[5]) or ångström[1][7][8][9] is a unit of length equal to 10−10 m; that is, one ten-billionth of a metre, 0.1 nanometre, or 100 picometres. Its symbol is Å, a letter of the Swedish alphabet.

Leave a Reply

Your email address will not be published. Required fields are marked *